Decomposing and colouring some locally semicomplete digraphs

نویسندگان

چکیده

A digraph is semicomplete if any two vertices are connected by at least one arc and locally the out-neighbourhood in-neighbourhood of vertex induce a digraph. In this paper we study various subclasses digraphs for which give structural decomposition theorems. As consequence obtain several applications, among an answer to conjecture Naserasr first third authors (Aboulker et al., 2021): oriented graph such that every induces transitive tournament, then can partition its set into acyclic digraphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complexity of colouring by locally semicomplete digraphs

In this paper we establish a dichotomy theorem for the complexity of homomorphisms to fixed locally semicomplete digraphs. It is also shown that the same dichotomy holds for list homomorphisms. The polynomial algorithms follow from a different, shorter proof of a result by Gutjahr, Welzl and Woeginger.

متن کامل

Spanning Local Tournaments in Locally Semicomplete Digraphs

We investigate the existence of a spanning local tournament with possibly high connectivity in a highly connected locally semicomplete digraph. It is shown that every (3k 2)-connected locally semicomplete digraph contains a k-connected spanning local tournament. This improves the result of Bang-Jensen and Thomassen for semicomplete digraphs and of Bang-Jensen [I] for locally semicomplete digrap...

متن کامل

A classification of arc-locally semicomplete digraphs

Tournaments are without doubt the best studied class of directed graphs [3, 6]. The generalizations of tournaments arise in order to extend the well-known results on tournaments to more general classes of directed graphs. Moreover, the knowledge about generalizations of tournaments has allowed to deepen our understanding of tournaments themselves. The semicomplete digraphs, the semicomplete mul...

متن کامل

A classification of locally semicomplete digraphs

In [19] Huang gave a characterization of local tournaments. His characterization involves arc-reversals and therefore may not be easily used to solve other structural problems on locally semicomplete digraphs (where one deals with a fixed locally semicomplete digraph). In this paper we derive a classification of locally semicomplete digraphs which is very useful for studying structural properti...

متن کامل

Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs

For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2022

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2022.103591